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A FAST LAGRANGE METHOD FOR LARGE-SCALE
IMAGE RESTORATION PROBLEMS WITH

REFLECTIVE BOUNDARY CONDITION

SeYoung Oh* and SunJoo Kwon**

Abstract. The goal of the image restoration is to find a good
approximation of the original image for the degraded image, the
blurring matrix, and the statistics of the noise vector given. Fast
truncated Lagrange (FTL) method has been proposed by G. Landi
as a image restoration method for large-scale ill-conditioned BTTB
linear systems([3]). We implemented FTL method for the image
restoration problem with reflective boundary condition which gives
better reconstructions of the unknown, the true image.

1. Introduction

Obtaining an accurate model of image blurring essentially requires
the identification of the blur operator which is called a point spread
function(PSF) and the choice of appropriate boundary conditions. The
former is related to the continuous infinite dimensional problem and
which decides the essential structure of the involved system matrix. The
latter has a substantial impact in the precision of the reconstruction es-
pecially close to the boundaries of the image(presence of ringing effects)
since the observed image is always finite([1]).

For getting the useful approximation of the true image, general lin-
ear, discrete ill-posed problems of the image restoration arisen from a
first-kind Fredholm integral equations has to be replaced by a Tikhonov
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regularization

min
x
‖Hx− y‖2

2 + γ ‖x‖2
2 ,(1.1)

where y ∈ Rn2
represents the observed image and x ∈ Rn2

is the true
image, γ is a positive regularization parameter. Note that the blurring
matrix H ∈ Rn2×n2

is a large scale ill-conditioned([8, 9]).
The aim of deblurring problem is to recover true image from blurred

and noisy images for given space invariant point spread functions. Be-
cause of the blurring process, the boundary values of degraded image
are not completely determined by the original image inside the scene.
The choice of the most appropriate boundary condition is an important
aspect in the modelization of image blurring. There are various studies
about boundary condition in the image restoration. Zero and periodic
boundary conditions bring an artificial discontinuity at the boundary,
which implies a ringing effect of the reconstructed image. To reduce
ringing effect, however, the use of reflective boundary condition was
considered in ([6, 13]).

The fast truncated Lagrange(FTL) method is well suited for large-
scale ill-conditioned BTTB linear systems which is from an image restora-
tion problem with zero boundary condition ([3]). FTL method uses a
quasi-Newton method applying to the first-order optimality conditions
of the Lagrangian function for the equality constrained minimization of
(1.1). Since the Hessian of the Lagrangian can be approximated by a
BCCB(block circulant with circulant block) matrix, the two-dimensional
fast Fourier transform(FFT) is used to compute the quasi-Newton step.
The quasi-Newton iteration is terminated according to the discrepancy
principle. The corresponding Lagrange multiplier of an iterative La-
grange method acts as a regularization parameter.

We analyzed the efficiency of FTL-method for the image restoration
problem with the reflective boundary condition. The use of the reflective
boundary condition results in a blurring matrix that is a Toeplitz-plus-
Hankel matrix with Toeplitz-plus-Hankel blocks. Although these matri-
ces have the complicated structures, they can always be diagonalized by
the two dimensional discrete cosine transform matrix, provided that the
blurring function is symmetric. Thus their inverses can be obtained by
using fast cosine transform(FCT). Because an FCT requires only real
multiplications and can be done at half of the cost of an FFT, inversion
of these matrices is faster than that of those matrices obtained from
classical zero or periodic boundary conditions([6]).
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The outline of this paper is organized as follows : Section 2 recalls
the FTL method in [3]. In Section 3, we discuss the implementation of
FTL method for Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel
blocks linear system. Section 4 reports the efficiency of the reflective
boundary condition in the FTL method. Finally, Section 5 is devoted
to conclusions and options for the future research.

2. Fast truncated Lagrange method

This section briefly mentions the fast truncated Lagrange method
suggested by G. Landi in [3]. This method for large scale image restora-
tion problems with zero boundary condition is based on the Lagrange
method and the discrepancy principle. It does not, however, require any
prior good estimates of the regularization parameter.

Minimization problem (1.1) can be replaced by the equality con-
strained minimization,

min
x

1
2
‖x‖2

subject to
1
2
‖Hx− y‖2 = ε,

(2.1)

where ε is a small positive parameter, likely 0 < ε ¿ δ2

2 if δ is the error
norm. The Lagrangian function for (2.1) becomes

L(x, λ) =
1
2
‖x‖2 + λ

(
1
2
‖Hx− y‖2 − ε

)
(2.2)

with the Lagrange multiplier λ. The Hessian of the Lagrangian is

(2.3) ∇2
xxL(x, λ) = I + λH∗H.

The structure of the matrixH∗H is a block Toeplitz matrix with Toeplitz
blocks(BTTB) under the zero boundary condition. It can be approx-
imated by C∗C with a block circulant matrix with circulant blocks
(BCCB) structure. A BCCB approximation matrix of the Hessian (2.3),

Q(λ) = I + λC∗C,

is also symmetric and positive definite. Thus Q(λ) can be easily inverted
by using fast Fourier transformations(FFTs).

Since (2.1) is a convex problem, the first-order conditions are suffi-
cient conditions for optimality. A quasi-Newton direction (∆xT , ∆λ) is
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obtained as the solution of the nonlinear equations:

(2.4)
(

Q(λ) ∇xh(x)
∇xh(x)T 0

)(
∆x
∆λ

)
= −

( ∇xL(x, λ)
h(x)

)
,

where h(x) = 1
2 ‖Hx− y‖2 − ε. The explicit solution of (2.4) can be

computed as

∆x = −Q(λ)−1(∇xL(x, λ) +∇xh(x)∆λ),

∆λ = (∇xh(x)T Q(λ)−1∇xh(x))−1{h(x)

−∇xh(x)T Q(λ)−1∇xL(x, λ)}.
(2.5)

For any v ∈ Rn2
, the product Q(λ)−1v can be computed by using FFTs.

In the FTL algorithm, the next iterate is computed as

xnew = x + α∆x, λnew = λ + α∆λ,(2.6)

where the search direction (∆xT ,∆λ) is the quasi-Newton direction (2.5)
and the step-length α can be chosen by Armijo’s condition. That is,
letting the merit function m(x, λ) = 1

2

∥∥∇(x,λ)L(x, λ)
∥∥2

, the step length
α is chosen by the first number of the sequence {1, 1

2 , 1
4 , . . . , 1

2i , . . .} which
satisfies the Armijo’s condition :

m(x + α∆x, λ + α∆λ) ≤ m(x, λ) + µα(∆xT , ∆λ)∇(x,λ)m(x, λ),

where µ = 10−4.

3. Reflective boundary condition

One image is shown only in a finite region and so points near the
boundary of a blurred image are affected by information outside the field
of view. Reflective boundary condition is that the pixels outside image is
a mirror image of the scene inside the image borders. Periodic boundary
condition imply that the image repeats itself endlessly in all directions.
Zero boundary condition is that the pixels outside the borders of the
image are all zero. Each boundary condition makes the PSF matrix into
a different special structure ([12]).

This section focuses on the implementation of FTL method for the im-
age restoration problem under the reflective boundary condition. Con-
sidering the reflective boundary condition, coefficient matrix H in (1.1)
has a Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks structure.
Let H be the n × n PSF matrix that define H. The first column of
Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks H can be
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found by applying dctshift to the extended matrix He made by embed-
ding H in the middle and padding the zero matrix in the sides. The
spectrum of H can be computed by using dct2(He) where dct2 denotes
the two-dimensional discrete cosine transformation ([10]). Let vector be
the operator converting a n × n array in a n2 vector and extract, the
operator which extracts from a 2n× 2n matrix the real part of its n×n
central submatrix. Then the product y = Hx is obtained as

y = vector (extract(idct2(dct2(He). ∗ dct2(Xe)))) ,

where idct2 is the inverse process of dct2. Here Xe is the 2n×2n central
submatrix from extended array,




Xx Xud Xx

Xlr X Xlr

Xx Xud Xx


 ,

where a matrix Xn×n is rearranged n2-length vector x and Xlr = fliplr(X),
Xud = flipud(X), Xx = fliplr(Xud).

The lemma below shows that for a symmetric blurring, the blurring
matrix H can be diagonalized by the two-dimensional discrete cosine
transform matrix. For the detail proof, see [6].

Lemma 3.1. If the point spread function h is symmetric, then H can
be diagonalized by the two-dimensional discrete cosine transform matrix
C⊗C, where the (i, j)th entry of n×n discrete cosine transform matrix
C is given by

(3.1) [C]i,j =

√
2− δi1

n
cos

(
(i− 1)(2j − 1)π

2n

)
, 1 ≤ i, j ≤ n,

where δij is the Kronecker delta function.

The solver for a deblurring problem with the reflective boundary con-
dition is twice as fast as problem with other boundary conditions since
fast cosine transform requires only real multiplications([4, 6]).

Let C = {(C ⊗ C)T Λ(C ⊗ C)|Λ is an n2 × n2 real diagonal matrix}.
For nonsymmetric point spread functions, matrices in C may be used as
preconditioners to speed up the convergence of iterative methods. Given
a matrix B, we define the optimal cosine transform preconditioners c(B)
to be the minimizer of ‖S −B‖F over all S in C.

Lemma 3.2. ([7]) Let h be an arbitrary point spread function and
H be the blurring matrix of h with the reflective boundary condition
imposed. Then the optimal cosine transform preconditioner c(H) of
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H is the blurring matrix corresponding to the symmetric point spread
function h given by

[hs]i,j ≡ ([h]i,j + [h]i,−j + [h]−i,j + [h]−i,−j)/4

with the reflective boundary condition imposed.

Considering the problem (2.1) with reflective boundary condition, the
matrixH has the structure of Toeplitz-plus-Hankel matrix with Toeplitz-
plus-Hankel blocks. The problem (2.1) is replaced to the unconstrained
minimization problem of the Lagrange function L(x, λ). Applying the
first order optimality conditions for this problem, the following new
problem is obtained,

min
x,λ

L(x, λ)

subject to ∇x,λL(x, λ) = 0, λ ≥ 0.
(3.2)

Theorem 3.3. Under the reflective boundary condition, the iterative
solution of problem (3.2) based on the FTL method is

xk+1 = xk + ∆x,

λk+1 = λk + ∆λ,
(3.3)

where the search direction (∆xT , ∆λ) is

∆λ = (∇xh(xk)T (I + λkH∗H)−1∇xh(xk))−1{h(xk)

−∇xh(xk)T (I + λkH∗H)−1∇xL(xk, λk)},
∆x = −(I + λkH∗H)−1(∇xL(xk, λk) +∇xh(xk)∆λ).

(3.4)

Proof. The Hessian ∇2
xxL(x, λ) of the Lagrangian function L(x, λ)

is I + λH∗H, which is also Toeplitz-plus-Hankel matrix with Toeplitz-
plus-Hankel blocks. As usual a Taylor series for∇x,λL(xk+1, λk+1) about
(xT

k , λk) gives

∇x,λL(xk + ∆x, λk + ∆λ)

= ∇x,λL(xk, λk) +∇2
x,λL(xk, λk)

(
∆x
∆λ

)

= ∇x,λL(xk, λk) +
(

I + λkH∗H ∇xh(xk)
∇xh(xk)T 0

)(
∆x
∆λ

)
+ · · ·

(3.5)

Neglecting higher order terms and setting the left hand size to zero gives
the iteration(

I + λkH∗H ∇xh(xk)
∇xh(xk)T 0

)(
∆x
∆λ

)
= −

( ∇xL(xk, λk)
h(xk)

)
.
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Thus the search direction (∆xT , ∆λ) of (3.4) can be obtained by solving
the above system directly.

In the computation of (3.4), $ = (I + λH∗H)−1υ is obtained as

$ = vector(extract(idct2(dct2(Ve)./(1 + λ|dct2(He)|.∧2)))),

where | · | and .∧ are the component-wise absolute value and squaring of
the matrix dct2(He).

Note that the step-length αk can be chosen by arbitrary line search
method like the Armijo’s condition. Including the step-length αk along
(∆xT , ∆λ) to (3.3),

(3.6) xk+1 = xk + αk∆x, λk+1 = λk + αk∆λ.

The stopping rule of the FTL method is based on the discrepancy
principle. That is, the iteration (2.6) is terminated as soon as an iterate
xk has been found such that ‖Hxk − y‖ ≤ ρδ, where ρ ≥ 1 is a fixed
parameter. Moreover the method is stopped if a maximum number Max
of iterations has been reached without finding a solution satisfying the
discrepancy principle([3, 11]).

The FTL algorithm for the image restoration problem with reflective
boundary condition can be outlined as follows :

Algorithm 1. FTL algorithm for image restoration problem with
reflective boundary condition.

1. Input x0, λ0, y, ρ, δ, Max.
2. For k = 0, 1, 2, . . . .

i. Compute

∆λ = (∇xh(xk)T (I + λkH∗H)−1∇xh(xk))−1{h(xk)

−∇xh(xk)T (I + λkH∗H)−1∇xL(xk, λk)},
∆x = −(I + λkH∗H)−1(∇xL(xk, λk) +∇xh(xk)∆λ).

ii. Find the step length αk along (∆xT , ∆λ).
iii. xk+1 = xk + αk∆x, λk+1 = λk + αk∆λ.
iv. If ‖Hxk+1 − y‖ ≤ ρδ or k ≥ Max, then stop.

4. Experimental results

We demonstrated the efficiency of employing reflective boundary con-
dition over periodic boundary condition for image restoration problems.

To show how well the points approximate the true image, we inves-
tigated the relative accuracy, ‖xtrue−xapprox‖

‖xtrue‖ , and the PSNR(peak signal-

to-noise ratio) values of the recovered images, PSNR = 10 log 10
(

2552

MSE

)
.
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Here MSE is the mean square error for two m× n monochrome images
I and J , where one of the images is considered a noisy approximation of
the other and is defined as MSE(I, J) = Σi,j(I(i,j)−J(i,j))2

mn . PSNR is most
commonly used as a measure of quality of reconstruction image([5]). As
the relative accuracy gets smaller with the bigger values of PSNR, the
approximated image becomes better.

The data source is a moon image taken from [2]. First, Atmospheric
turbulence is due to random variations in the refractive index of the
medium between the object and the imaging system. For many practi-
cal purposes, the blurring can be modeled by a Gaussian point spread

function, H(x−x′, y−y′) = 1
2πσσ̄ exp

(
−1

2

(
x−x′

σ

)2
− 1

2

(
y−y′

σ̄

)2
)

, where

σ̄ and σ are two constants that the blurring in the x and y directions,
respectively. Second, Out-of-focus blur arises when the lens is out of
focus, i.e., when the focal point of the lens does not match with the
light-sensitive CCD. A good model of the point spread function for out-
of focus blur is

H(x− x′, y − y′) =

{
(πr2)−1,

√
(x− x′)2 + (y − y′)2 ≤ r,

0, otherwise,

where the parameter r characterizes the defocus. These PSF functions
have been obtained with the Matlab code psfGauss and psfDefocus from
the RestoreTools package ([12]) respectively. In our test, we fix the
parameter σ = σ̄ = 5 in the atmospheric turbulence and r = 10 in the
out-of-focus blur.

Under the reflective boundary condition, the left of Fig. 1 shows
the blurred and noisy image for comparison and the right of it is the
reconstruction image by FTL scheme. Armijo’s step-lengths are α1 =
α2 = . . . = α12 = 1, α13 = α14 = 1

2 , α15 = . . . = α17 = 1
22 , α18 =

α19 = . . . = α21 = 1
23 , α22 = α23 = . . . = α26 = 1

24 , . . .. The discrep-
ancy, | ‖Hxapprox − y‖ − δ|, is 5.87 × 10−3. The relative accuracy and
PSNR corresponding Gaussian blurring for two boundary conditions are
presented in Table 1. Using reflective boundary condition, the relative
error and PSNR of reconstructed image are 3.79 × 10−2 and 37.77 re-
spectively. Using the periodic boundary condition brings the result that
the relative error is 1.04 × 10−1 and PSNR is 28.99. Relative accuracy
is smaller and PSNR is higher under the reflective boundary condition.
Also, we represented the result using the periodic boundary condition
in Fig 2. There are a little ringing effect in the reconstruction image.
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 Blurred and noisy image  Restored image

Figure 1. Restoring Gaussian blur with reflective
boundary condition : Relative accuracy is 3.79 × 10−2,
PSNR is 37.77, and the discrepancy is 5.87× 10−3.

Thus reflective boundary condition brings a better result than periodic
boundary condition.

We need two-dimensional FFTs and FCTs to compute the restored
images for the periodic and the reflective boundary condition, respec-
tively. The reflective boundary condition is twice as fast because FCTs
require real multiplications only. In conclusion, we see that the cost
using the reflective boundary condition is lower than that of using the
periodic boundary condition.

Table 1. Comparison for reflective and periodic bound-
ary condition under the Gaussian blurring

Boundary condition Relative error PSNR(dB)
Reflective 3.79× 10−2 37.77
Periodic 1.04× 10−1 28.99

Our results for out-of-focus blurring are presented in Table 2. Al-
though different blurring, reflective boundary condition is more efficient
than other boundary conditions.

Fig. 1 and 2 show the restored image for the two different boundary
conditions respectively. By imposing the reflective boundary condition,
the relative accuracy and the ringing effect are the smallest. Moon image
is better reconstructed by using the reflective boundary condition than
by using periodic boundary condition.
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 Blurred and noisy image  Restored image

Figure 2. Restoring Gaussian blur with periodic
boundary condition : Relative accuracy is 1.04 × 10−1,
PSNR is 28.99, and the discrepancy is 3.37× 10−3.

Table 2. Comparison for reflective and periodic bound-
ary condition under the out-of-focus blurring

Boundary condition Relative error PSNR(dB)
Reflective 4.98× 10−2 35.39
Periodic 5.95× 10−2 33.86

5. Conclusion

Using reflective boundary condition in the image restoration problem
brings a large-scale ill-conditioned Toeplitz-plus-Hankel with Toeplitz-
plus-Hankel blocks linear system. FTL method is also well suited for this
system. Numerical results presented shows that the reflective boundary
condition provides an effective model for image restoration problems,
in terms of both the computational cost and minimizing the ringing
effects near the boundary. The reflective boundary condition provides
the smaller relative accuracy and the higher PSNR.

The artificial boundary discontinuities can be eliminated by using
the reflective boundary condition. The choice of the most appropriate
boundary conditions must be the one of the main aspect in the mod-
elization of image deblurring. For a further research in the future, FTL
algorithm can be extended to the anti-reflective and synthetic boundary
condition to obtain a better result.
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